…so that we didn't have to get our hands wet opening valves while the die and large flask were submerged in the bath.
The idea with the standard ice is that you have packed "seed ice" and liquid water both equilibrated in a big tub of ice water, getting the whole system down to exactly zero degrees C. Then you pull a vacuum on the seed ice and open the valve to the inverted flask. The cold water floods the pore space of the seed ice. You then quickly put the flooded die in the cold room (-30C) atop a copper plate and insulate the sides, promoting bottom up directional freezing of the water you introduced. The process, we found, takes a couple of hours (not counting the making of the seed ice, which I'll report on later. That's a whole other can of worms) but then you are left with this giant bucket of ice water to throw away. Seemed wasteful. So we downsized the whole shebang to this much smaller bucket, lowered the risers, and swapped out the huge inverted flask for a small squirt bottle.
The result is this fully dense rectangle of crystalline ice. Here Mike is taking a slice with a wood saw so that we can take a closer look and see how we did.
He'll be imaging the samples with the microscope we have in the cold room and then analyzing the images for things like grain growth, porosity, fracturing, etc. Take special note of what he's wearing. After one day in the cold room, he knew there had to be a better way. He came back the next day with an old plastic hazmat suit that he'd rigged up with a blowdryer to make this custom warm suit. I've got an order in for a second!
No comments:
Post a Comment